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The human gut microbiome plays a critical role in modulat-
ing human health and disease. Variations in the composition 
of the human gut microbiome have been associated with a 

wide variety of chronic diseases, including colorectal cancer (CRC), 
inflammatory bowel disease (IBD) and irritable bowel syndrome 
(IBS). For example, previous studies have reported an increase in the 
abundance of Fusobacterium nucleatum and Parvimonas in CRC1,2, 
reduced abundance of Faecalibacterium prausnitzii and enrichment 
of enterotoxigenic Bacteroides fragilis in CRC and IBD3–5, and over-
representation of Enterobacteriaceae and Streptococcus in IBD and 
IBS6–8. In addition to the gut microbiome, dysregulation of host 
gene expression and pathways have also been implicated in these 
diseases. Researchers have reported disruption of Notch and WNT 
signalling pathways in CRC9,10, activation of toll-like receptors (for 
example, TLR4) that induce NF-κB and TNF-α signalling pathways 
in IBD11,12, and dysregulation of immune response and intestinal 
antibacterial gene expression in IBS8,13. While host transcription 
and gut microbiome have separately been identified as contributing 
factors to these gastrointestinal (GI) diseases, it is unclear how the 
two may associate to influence host pathophysiology14.

Studies in model organisms have demonstrated that the modu-
lation of host gene expression by the gut microbiome is a poten-
tial mechanism by which microbes can affect host physiology15–18. 
For example, in zebrafish, the gut microbiome negatively regulates 
the transcription factor hepatocyte nuclear factor 4, leading to host 
gene expression profiles associated with human IBD18. In mice, the 
gut microbiota can alter host epigenetic programming to modu-
late intestinal gene expression involved in immune and metabolic 

processes16,17. Additionally, recent in vitro cell culture experiments 
have shown that specific gut microbes can modify the gene expres-
sion in interacting human colonic epithelial cells19. Given the evi-
dence for crosstalk between the gut microbiome and host gene 
regulation, characterizing the interplay between the two factors 
is critical for unravelling their role in the pathogenesis of human 
intestinal diseases.

A few recent studies have investigated associations between the 
host transcriptome and gut microbiome in specific human gut dis-
orders, including IBD, CRC and IBS. For example, studies exam-
ining microbiome–host gene relationships in IBD have identified 
mucosal microbiome associations with host transcripts enriched for 
immunoinflammatory pathways20–22. While investigating longitudi-
nal host–microbiome dynamics in IBD, Lloyd-Price et al.22 identi-
fied associations between expression of chemokine genes, including 
CXCL6 and DUOX2, and abundance of gut microbes, including 
Streptococcus and Ruminococcaceae. Studies investigating the role of 
host gene–microbiome associations in CRC have found correlations 
between the abundance of pathogenic mucosal bacteria and expres-
sion of host genes implicated in gastrointestinal inflammation and 
tumorigenesis23,24. In IBS, host genes implicated in gut barrier func-
tion and peptidoglycan binding, such as KIFC3 and PGLYRP1, are 
associated with microbial abundance of Peptostreptococcaceae and 
Intestinibacter8. While these studies have revealed important insights 
about host gene–microbiome crosstalk in GI diseases, they are lim-
ited in several aspects. For example, most studies have examined 
associations between a limited subset of host genes and gut microbes; 
for instance, by focusing only on differentially expressed genes21,22,24, 
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genes associated with immune functions13,23 or select microbes rep-
resenting bacterial clusters or co-abundance groups20,23, thus char-
acterizing only a subset of potential associations. In addition, the 
identification of host gene–microbe associations is based on testing 
for pairwise correlation between every host gene and microbe using 
Spearman or Pearson correlation, thus ignoring the inherent multi-
variate properties of these datasets21,22,24. Additionally, most studies 
focus on examining associations in a single disease at a time; hence, 
common and unique patterns of host–microbiome associations 
across multiple disease states remain poorly characterized.

Here we comprehensively characterized associations between 
mucosal gene expression and microbiome composition in patients 
with colorectal cancer, inflammatory bowel disease and irritable 
bowel syndrome—three GI disorders in which both host gene regu-
lation and gut microbiome have been implicated as contributing 
factors1,6,8,10,13. We developed and applied a machine learning frame-
work that overcomes typical challenges in multi-omic integrations, 
including high-dimensionality, sparsity and multicollinearity, to 
identify biologically meaningful associations between gut microbes 
and host genes and pathways in each disease. We leveraged our 
framework to characterize disease-specific and shared host gene–
microbiome associations across the three diseases that may facilitate 
insights into the molecular mechanisms underlying pathophysiol-
ogy of these gastrointestinal diseases.

Results
Integrating host gene expression and gut microbiome abun-
dance. To study host–microbiome relationship across diseases, we 
used host gene expression (RNA-seq) data and gut microbiome 
abundance (16S rRNA sequencing) data generated from colonic 
mucosal biopsies obtained from patients with CRC, IBD and IBS 
(Fig. 1a). For each individual in our study, we obtained a pair of 
samples—a microbiome sample and a host gene expression sample. 
In total, across the three disease cohorts, our study included 208 
such pairs of microbiome and host gene expression samples (416 
samples in total; Supplementary Table 1). All datasets, except the 
host gene expression (RNA-seq) data for CRC, have been previously 
published as individual studies3,8,22,25. Detailed information on dis-
ease cohorts, samples, sequencing, quality control and data process-
ing is available in Methods.

Previous studies have identified host gene–microbiome asso-
ciations in human gut disorders, including CRC, IBD and IBS8,22,23. 
Thus, one might expect intestinal gene expression patterns and 
microbiome composition to be broadly correlated in these diseases. 
To test for such an overall association between host gene expression 
and gut microbiome composition, we performed Procrustes analy-
sis using paired data for each disease cohort. Our analysis showed 
significant correspondence between host gene expression variation 
and gut microbiome composition across subjects in CRC (Monte 
Carlo P value = 0.0001). However, Procrustes agreement is not sig-
nificant in IBD (Monte Carlo P value = 0.1) and IBS (Monte Carlo 
P value = 0.42) (Fig. 1b and Methods). These results were verified 
using a Mantel test (Methods). This lack of significant overall cor-
respondence between host transcriptome and gut microbiome 
across diseases might suggest that, rather than an overall association 
between the two, it is probable that only a subset of gut microbes is 
associated with a subset of host genes at the colonic epithelium15,17. 
Hence, we need integration approaches to characterize such host 
gene–microbiome associations.

To this end, we developed a machine learning-based multi-omic 
integration framework using sparse canonical correlation analysis 
(sparse CCA)26,27 and lasso penalized regression28. We applied this 
approach to data from CRC, IBD and IBS for a comprehensive 
characterization of potentially biologically meaningful associations 
between gut microbiota and host genes and pathways across the 
three diseases (Fig. 1, Methods and Extended Data Fig. 1).

Shared host pathways are associated with disease-specific gut 
microbes. We hypothesized that host genes and gut microbial taxa 
involved in common biological functions would act in a coordinated 
fashion, and hence would have correlated expression and abun-
dance patterns. To investigate this, we used sparse CCA to charac-
terize group-level association between host transcriptome and gut 
microbiome in each of the three diseases26,27. We fit the sparse CCA 
model for each dataset to identify subsets of significantly correlated 
host genes and gut microbes, known as components (Methods and 
Supplementary Tables 2–4). We then performed pathway enrich-
ment analysis on the set of host genes in each significant compo-
nent to determine host pathways that associate with gut microbes 
in a disease. We identified ‘shared’ pathways, namely host pathways 
for which gene expression correlates with gut microbes across dis-
ease cohorts, and ‘disease-specific’ pathways, namely host path-
ways for which gene expression correlates with gut microbes in 
only one of the three disease cohorts (Fig. 2a, Fisher’s exact test, 
Benjamini-Hochberg FDR < 0.1; Supplementary Table 5). For 
simplicity, we focused on the top five most significant shared and 
disease-specific pathways (Fig. 2a). We found three pathways shared 
across CRC, IBD and IBS that are known to regulate gastrointesti-
nal tract inflammation, and gut barrier protection and repair. For 
example, oxidative phosphorylation, which is the process of energy 
metabolism in the mitochondria, is known to be dysregulated in 
IBD and CRC, and contributes to tumorigenesis and drug resistance 
in CRC29–32. We also found overlapping host pathways between dis-
ease pairs (see CRC & IBD, CRC & IBS, and IBD & IBS in Fig. 2a), 
including immunoregulatory pathways and cell-surface receptors 
such as integrin pathway, cell and focal adhesion, and proteasome.

In addition, we identified 102 disease-specific host pathways 
that are associated with gut microbes, including 52 CRC-specific, 
25 IBD-specific and 25 IBS-specific pathways in our study cohorts 
(Supplementary Table 5 and Fig. 2a). While IBD-specific host path-
ways include A6B1/A6B4 integrin pathway and integrin beta-1 
pathway that regulate leucocyte recruitment in GI inflammation33, 
IBS-specific pathways include immune response pathways, includ-
ing B cell receptor signalling pathway, and ribosome pathway.

To better understand the host gene–microbe associations that 
underlie common associations, we focused on the RAC1 pathway, 
where host gene expression is associated with microbiome composi-
tion in CRC, IBD and IBS. The RAC1 pathway is known to regulate 
immune response and intestinal mucosal repair, and has previ-
ously been implicated in IBD and CRC34,35 (Fig. 2b). As expected, 
we observed some overlapping host genes for this shared pathway 
across the three diseases. However, the microbial taxa they are cor-
related with are disease-specific. In CRC, the RAC1 pathway is asso-
ciated with oral bacterial taxa such as Streptococcus, Synergistales 
and GN02, where Streptococcus species are known to be associated 
with colorectal carcinogenesis36,37. In IBD, the RAC1 host pathway is 
associated with microbial taxa previously implicated in IBD, includ-
ing Granulicatella38,39, and Clostridium sensu stricto 1, a microbe 
associated with chronic enteropathy similar to IBD40. In IBS, this 
pathway is associated with bacteria such as Bacteroides massiliensis 
that has been shown to be prevalent in colitis41, and Bifidobacterium 
and Odoribacter that are known to be depleted in IBS42,43.

To investigate disease-specific associations, we considered 
unique host pathways for which host gene expression correlates 
with gut microbes only in one of the three diseases (Fig. 2c). For 
example, the Syndecan-1 pathway, which we found to be associ-
ated with gut microbial taxa only in CRC, has been previously 
shown to regulate the tumorigenic activity of cancer cells44,45. Host 
gene expression in this pathway is associated with microbial taxa 
such as Parvimonas and Bacteroides fragilis that are known to pro-
mote intestinal carcinogenesis and are considered biomarkers of 
CRC1,46,47. The integrin-1 pathway, a disease-specific host path-
way in IBD, is found to be associated with Peptostreptococcaceae, 
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Intestinibacter and Phascolarctobacterium—microbial taxa that have 
been implicated in IBD by previous studies48–50. To assess similari-
ties in host gene components across diseases, we identified a set of 
host genes that are common between components across the three 
diseases, and we found that these genes are enriched for immune 
response pathways in gut epithelium, including vascular endothe-
lial growth factor (VEGF), complementation and coagulation cas-
cades, and cytokine–cytokine receptor association (Fig. 2d, Fisher’s 
exact test, Benjamini-Hochberg FDR < 0.1). While this set of host 
genes is associated with disease-specific groups of microbes, we 
also found overlapping microbes between IBD and IBS, such as 
Peptostreptococcaceae and Intestinibacter—taxa that are found in 
high abundance in gastrointestinal inflammation48,50.

Gut microbes are associated with individual host genes and 
pathways. Previous studies have shown that specific microbial 
taxa can regulate expression of individual host genes15,19. Therefore, 
we explored associations between individual host genes and gut 
microbes in each disease. To do so, we used lasso penalized regres-
sion models to identify specific gut microbial taxa whose abun-
dance is associated with the expression of a host gene28. We fit these 
models in a gene-wise manner, using the expression for each host 
gene as the response variable and the abundances of gut micro-
bial taxa as predictors. We then applied stability selection to iden-
tify robust associations (Methods). Using this approach, we found 
755, 1,295 and 441 significant and stability-selected host gene–taxa 

associations in CRC, IBD and IBS, respectively (Fig. 3, FDR < 0.1). 
These represent associations between 745 host genes and 120 gut 
microbes in CRC (Supplementary Table 6), between 1,246 host 
genes and 56 gut microbes in IBD (Supplementary Table 7), and 
between 436 host genes and 102 gut microbes in IBS (Supplementary 
Table 8 and Fig. 3a). Examples of specific host gene–microbe asso-
ciations can be found in Extended Data Fig. 2. Overall, we observed 
disease-specific patterns in host gene–taxa associations.

To characterize the biological functions represented by the host 
genes that associate with specific gut microbes, we applied enrich-
ment analysis to the set of gut microbiota-associated host genes in 
each disease (Methods). This is complementary to our group-level 
approach (Fig. 2) in that these host pathways are enriched among 
individual host gene–microbe pairs. We identified 18 host path-
ways that are unique to each disease, including 4 CRC-specific, 9 
IBD-specific and 5 IBS-specific pathways that associate with unique 
gut bacteria (Fig. 3b, Fisher’s exact test, Benjamini-Hochberg 
FDR < 0.1; Supplementary Table 9 and Methods). The host path-
ways enriched among CRC-specific associations are known to 
modulate tumour growth, progression and metastasis in CRC, such 
as interleukin-10 signalling, signalling by NOTCH1 in cancer, and 
regulation of MECP2 expression and activity51–53. The host path-
ways we identified as enriched among IBD-specific associations 
are known to be responsible for maintenance of gastric mucosa 
integrity, inflammatory response and host defence against invad-
ing pathogens, such as thrombin signalling through proteinase 
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activated receptors (PARs) and glucagon type ligand receptors54,55. 
For IBS-specific associations, the enriched host pathways identified 
here have been shown to regulate homoeostasis of intestinal tissue 
and proinflammatory mechanisms in IBS, such as sumoylation of 
DNA damage response and repair proteins, and arachidonic acid 
metabolism56,57.

To characterize the potential mechanism of host gene–microbe 
associations, we further investigated the gut microbial taxa asso-
ciated with host genes in these pathways (Fig. 3c–e). In CRC, we 

found that Anaerolineae and TM7—oral microbes that also inhabit 
the human gastrointestinal tract, and are known to promote oral 
and colorectal tumorigenesis58–60—are negatively correlated with 
host genes enriched in the tumour-promoting interleukin-10 sig-
nalling pathway, such CXCL8 and IL1RN (Fig. 3c and Extended 
Data Fig. 2). CXCL8 is known to be overexpressed in CRC, and 
IL1RN is centrally involved in immune and inflammatory response, 
and its polymorphisms are implicated in colorectal carcinogen-
esis61,62. Other host genes in interleukin-10 signalling, such as CCR2 
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and FPR1, are positively correlated with Bacteroidales (Fig. 3c 
and Extended Data Fig. 2). CCR2 and FPR1 are overexpressed in 
colorectal tumours, while Bacteroidales are enriched in CRC and 
associated with tumorigenesis63–65.

We observed that Peptostreptococcaceae, which is prevalent 
in patients with IBD50, is associated with multiple host genes and 
pathways in IBD (Fig. 3d). For example, its abundance is positively 
correlated with the expression of host genes MAPK3 and VIPR1, 
involved in thrombin signalling through proteinase activated 
receptors (PARs) and glucagon-type ligand receptors pathways, 
respectively. MAPK3 is known to play a role in the progression 
and development of IBD, and VIPR1 is overexpressed in inflamed 
mucosa66,67. In IBS-specific associations, we found the levels of 
Prevotella, which is known to be overrepresented in individuals 
with loose stool, to be negatively associated with expression of 
SMC5, which is involved in the sumoylation pathway68,69 (Fig. 3e). 
We also found the expression of PLA2G4A, a host gene that plays 
an important role in arachidonic acid metabolism and modulates 
gut epithelial homoeostasis70, to be positively correlated with the 
abundance of Bacteroides massiliensis in IBS, B. massiliensis being 
known to be prevalent in patients with gut malignancies41 (Fig. 3e).  
Taken together, these findings demonstrate that associations 
between specific gut microbial taxa and specific host genes and 
pathways vary by disease state.

Disease-specific gut microbe–host gene crosstalk. To under-
stand how gut microbes may associate with specific host genes 
across diseases, we explored the overlaps between host gene–
microbe associations in CRC, IBD and IBS (Fig. 4a, lasso regres-
sion, Benjamini-Hochberg FDR < 0.1; Supplementary Table 10). We 
identified ‘shared’ gut microbes, namely gut microbes that associate 
with host genes in at least two diseases, and visualized their networks 
of association with host genes across diseases. We found three gut 
microbes, Peptostreptococcaceae, Streptococcus and Staphylococcus, 
whose abundance is correlated with host gene expression in all 
three diseases in our study cohorts (Fig. 4a, Network 1). Previous 
studies have revealed that Peptostreptococcaceae and Streptococcus 
spp. are found at elevated levels in CRC, IBD and IBS8,37,50,71–74. 
While traditionally considered nasal- or skin-associated bacteria, 
Staphylococcus spp. also colonize the human gastrointestinal tract 
and include opportunistic pathogens that can cause acute intestinal 
infections in patients with CRC and IBD, and are associated with 
increased risk of IBS and CRC74–77. We found that the abundance of 
Peptostreptococcaceae is positively correlated with the expression 
of host genes PYGB and NCK2 in IBD, whereas it is negatively cor-
related with the expression of host gene HAS2 in IBS. PYGB and 
NCK2 are both upregulated in IBD, where PYGB is known to regu-
late the WNT/β-catenin pathway, and NCK2 is involved in integrin 
and epidermal growth factor receptor signalling78–80. In contrast, 
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Fig. 3 | Specific gut microbes are associated with individual host genes and pathways in each disease. a, Heatmap showing the overall pattern of 
correlation between significant and stability-selected host genes (rows) and gut microbial taxa (columns) identified by the lasso model in CRC, IBD and 
IBS (FDR < 0.1). b, Host pathways enriched among genes that are correlated with specific gut microbes in CRC (purple), IBD (green) and IBS (yellow) 
(FDR < 0.1). c–e, Networks showing specific gut microbes correlated with specific host genes enriched for disease-specific host pathways in CRC (c), IBD 
(d) and IBS (e). Triangular nodes represent gut microbes, circular nodes represent host genes and pathways. Edge colour represents positive (blue) or 
negative (red) association, and edge width represents strength of association (Spearman rho). Grey edges represent host gene–pathway associations.
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HAS2 is known to have a protective effect on the colonic epithelium 
through regulation of intestinal homoeostasis and inflammation81,82. 
In CRC, we found that the abundance of Peptostreptococcaceae is 
negatively associated with the expression of GAB1, a host gene for 
which overexpression stimulates tumour growth in colon cancer 
cells83. Streptococcus also shows a disease-specific pattern of asso-
ciation with host gene expression in our study cohort. In CRC, its 
abundance is correlated with the expression of RIPK4, which regu-
lates WNT signalling and the NF-κB pathway, and is upregulated 
in several cancer types, including colon cancer84,85. Similarly, in 
IBS, Streptococcus abundance is correlated with the expression of 
DPEP2, which is known to modulate macrophage inflammatory 
response86 (Fig. 4a, Network 1).

Next, we visualized the networks of host gene–microbe associa-
tions for gut microbes that are associated with host genes in two dis-
eases (Fig. 4a, Networks 2–4, lasso regression, Benjamini-Hochberg 
FDR < 0.1; Supplementary Table 10). We found 20 microbes for 
which abundance is associated with the expression of host genes 
in at least two diseases. Notably, the abundance of Blautia, a 
butyrate-producing beneficial microbe, is found to be negatively 
correlated with the expression of RIPK3 in both CRC and IBD  
(Fig. 4a, Network 4; Extended Data Fig. 3). RIPK3 promotes intesti-
nal inflammation in IBD, and colon tumorigenesis87,88. Interestingly, 
in CRC, Blautia is also associated with ZBP1 (Fig. 4a, Network 4), 
a host gene that recruits RIPK3 to induce NF-κB activation, and 
regulates innate immune response to mediate host defence against 
tumours and pathogens89,90.

Conversely, to explore how the same host genes may associate 
with different gut microbes across all diseases, we identified host 
genes that are associated with gut microbes in at least two diseases, 
and visualized their networks of association across diseases (Fig. 4b, 
lasso regression, FDR < 0.1; Supplementary Table 11). We identi-
fied 5 such host genes that associate with 4 gut microbes in CRC, 
5 gut microbes in IBS and 4 gut microbes in IBD (Fig. 4b, Network 
1; Supplementary Table 11). Of note, the expression of PINK1—a 
host gene that regulates mitochondrial homoeostasis and activates 
PI3-kinase/AKT signalling, contributing to intestinal inflammation 
in IBD and tumorigenesis32,91—is associated with the abundance 
of Collinsella in CRC, Peptostreptococcaceae in IBD and Blautia 
in IBS. Previous studies have found that Collinsella is increased in 
abundance in CRC92, whereas Blautia has been found to be both 
positively and negatively correlated with IBS symptoms8,43.

In addition, we identified 135 host genes for which expression 
is associated with abundance of microbial taxa in at least two of the 
three diseases, and visualized the network of the most significant 
associations (Fig. 4b, Networks 2–4, lasso regression, FDR < 0.1; 
Supplementary Table 11). We found that the host genes whose 
expression is correlated with gut microbes in both CRC and IBD 
are enriched for pathways involved in immune response, includ-
ing natural killer cell mediated toxicity, Leishmania infection and 
leucocyte transendothelial migration (Fig. 4b, Network 4, Fisher’s 
exact test, Benjamini-Hochberg FDR < 0.1). These host genes and 
the microbial taxa they associate with have been previously impli-
cated in CRC and IBD. For example, expression of Annexin A1 or 

ANXA1—a host gene known to regulate intestinal mucosal injury 
and repair, and found to be dysregulated in CRC and IBD93,94—is 
positively correlated with Bacteroidales in CRC, while negatively 
correlated with Peptostreptococcaceae in IBD (Fig. 4b, Network 4). 
TLR4—a host gene known to modulate inflammatory response in 
intestinal epithelium through recognition of bacterial lipopolysac-
charide95, and previously implicated in IBD and CRC96,97—is found 
to be associated with an oral microbe GN02 in CRC98, whereas in 
IBD it associates with Acidaminococcaceae—a gut microbe found 
to be increased in abundance in patients with Crohn’s disease99  
(Fig. 4b, Network 4). Overall, our analysis shows that gut micro-
bial taxa and host genes that are shared between associations across  
diseases depict disease-specific host–microbe crosstalk, thus sug-
gesting that the mechanism of host gene–microbiome association 
might be specific to the disease.

Discussion
While gut microbial communities and host gene expression have 
separately been implicated with human health and disease, the role 
of the association between gut microbes and host gene regulation in 
the pathogenesis of human gastrointestinal diseases remains largely 
unknown. Using a machine learning-based multi-omic integration 
framework, here we found both common and disease-specific inter-
play between gut microbes and host gene regulation that may con-
tribute to the underlying pathophysiology of GI disorders, including 
CRC, IBD and IBS.

Previous studies have found common microbial signatures 
across CRC, IBD and IBS. For example, all three diseases exhibit 
an overrepresentation of Peptostreptococcaceae and Streptococcus 
spp.8,37,50,72. In addition, both CRC and IBD microbiomes are denoted 
by a loss of butyrate-producing gut bacteria, including Blautia, and 
an enrichment of enterotoxigenic Bacteroides fragilis5,47,72. In contrast 
to these microbiome similarities, host gene regulation shows distinct 
alterations across the three GI disorders; for example, unique anti-
bacterial gene expression profile and disruption of the purine sal-
vage pathway are specific to IBS, deregulation of proinflammatory 
IL-23/IL-17 signalling is unique to IBD, and prominent activation 
of oncogenic pathways such as Notch and WNT signalling is a hall-
mark of CRC8,13,100,101. Here we found that the same disease-related 
gut microbes can associate with different host genes and pathways 
in each disease. Thus, it is compelling to hypothesize that although 
diseases can be characterized by similar microbial perturbations, 
these microbes can impact disease-specific pathophysiological pro-
cesses through association with different host genes in each disease. 
For example, we found that in CRC, Streptococcus is correlated with 
the expression of host genes that regulate WNT signalling and the 
NF-κB pathway, whereas in IBS Streptococcus is correlated with host 
genes that modulate macrophage inflammatory response, thus sug-
gesting that this gut microbe may perturb distinct host pathways in 
CRC and IBS. Of course, since our results are based on correlational 
analysis, it is challenging to assess directionality. While it is pos-
sible that these disease-specific associations have a role in disease 
pathogenesis, it is also possible that the disease-transformed colonic 
mucosa renders it more conducive to the same microbial taxa.

Fig. 4 | Disease-specific gut microbe–host gene crosstalk. a, Associations for ‘shared’ gut microbes, namely microbes that are associated with host genes 
in at least two diseases. Centre: Venn diagram showing overlap between gut microbes associated with host genes in CRC, IBD and IBS. Counter-clockwise, 
left to right: networks showing host gene–microbe associations for gut microbes shared across associations in CRC, IBD and IBS (Network 1), CRC and 
IBS (Network 2), IBD and IBS (Network 3), and CRC and IBD (Network 4). b, Associations for ‘shared’ host genes, that is, genes that are associated 
with microbes in at least two diseases. Centre: Venn diagram showing overlap between host genes associated with gut microbes in CRC, IBD and IBS. 
Counter-clockwise, left to right: networks showing host gene–microbe associations for host genes shared across associations in CRC, IBD and IBS 
(Network 1), CRC and IBS (Network 2), IBD and IBS (Network 3), and CRC and IBD (Network 4). Circular nodes represent host genes, triangular nodes 
represent gut microbes. Coloured nodes represent specific diseases (purple, CRC; green, IBD; yellow, IBS), grey nodes represent gut microbes (a) and host 
genes (b) shared between associations across diseases. Edge colour represents positive (blue) or negative (red) association, and edge width represents 
strength of association (Spearman rho). All associations were determined at FDR < 0.1.
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We also identified a common set of host genes and pathways 
that are associated with gut microbiome composition in all three 
diseases. These included pathways that regulate gastrointestinal 

inflammation, immune response and energy metabolism, and have 
been previously implicated in these diseases30,102,103. Our analysis 
shows that these common host genes and pathways correlate with 
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disease-specific gut microbes in CRC, IBD and IBS. For example, 
we found that the expression of host gene PINK1, which regulates 
the PI3-kinase/AKT signalling pathway91, is associated with the 
abundance of Collinsella in CRC, Peptostreptococcaceae in IBD, 
and Blautia in IBS in our study. This suggests that in some cases, 
distinct gut microbes may modulate host genes and pathways that 
are commonly dysregulated across different gut pathologies. At 
the same time, we also found disease-specific host gene–microbe 
associations. For example, in CRC, the Syndecan-1 pathway, a host 
pathway that modulates tumour growth and progression, is corre-
lated with microbial taxa such as Parvimonas and Bacteroides fragi-
lis that are known to promote intestinal carcinogenesis44,46,47. These 
associations are not found in IBD or IBS, and are unique to CRC in 
our study cohort. The disease-specific pattern of host gene–microbe 
crosstalk suggests that gut microbes, either through direct interac-
tion with host cells or through indirect interaction (for example, via 
production of specific metabolites), may regulate host gene expres-
sion differently in specific disease contexts.

Our study has several limitations. While we report the potential 
role of host gene–microbiome associations in the pathophysiology 
of GI disorders, our study identifies correlations, and we cannot 
directly infer causality from these results. Given the challenges 
associated with studying causal mechanisms in humans, future 
studies using cell culture or animal models would be useful in elu-
cidating the causal role and directionality of associations between 
the gut microbiome and host gene regulation in these diseases104. 
Additionally, our analysis focused only on the taxonomic com-
position of the microbiome, and hence we could not characterize 
associations involving microbial genes and pathways. Lastly, there 
are several host and environmental variables that could potentially 
influence the microbiome and/or host gene expression, including 
age differences, sampling locations, diet, host genetics, treatment 
and medication history, which are not available across our disease 
cohorts. Thus, these factors are potential confounders that might 
influence our results.

Overall, our work demonstrates the power of integrating gut 
microbiome and host gene expression data to provide insights into 
their combined role in GI diseases, including CRC, IBD and IBS. 
Taken together, our results indicate that GI disorders are character-
ized by a complex network of associations between microbes and 
host genes. Although these associations can be disease-specific, we 
find cases where the same microbial taxon is associated with differ-
ent host genes in each disease, and vice-versa: cases where the same 
host pathway is associated with different microbes in each disease. 
Although much effort in microbiome research has been directed 
towards identifying specific microbial taxa that are responsible for 
the pathogenesis of disease, our findings indicate that it is critical to 
incorporate host genomics data, as it can provide invaluable infor-
mation on the potential mechanisms through which microbes can 
affect health. Our results represent an important step towards char-
acterizing the association between gut microbiome and host gene 
regulation, and understanding the contribution of the microbiome 
to disease aetiology.

Methods
Overall study design, samples and data. Overall, our study included 208 paired 
microbiome (16S rRNA) and host gene expression (RNA-seq) samples, which 
include 88 pairs of samples in the CRC cohort (44 tumour and 44 patient-matched 
normal)3, 78 pairs of samples in the IBD cohort (56 patients and 22 controls)22,25 and 
42 pairs of samples in the IBS cohort (29 patients and 13 controls)8 (Supplementary 
Tables 1 and 12–17). All datasets, except the host gene expression data for CRC, 
have been previously published as individual studies3,8,22,25. The original studies 
obtained written informed consent from study participants in each cohort. Details 
on randomization and blinding during data collection can be found in publications 
describing the original studies. No statistical methods were used to pre-determine 
sample sizes, but our sample sizes are similar to those reported in the previous 
publications3,8,22,25. Below, we describe in detail the sample collection, sequencing 

and quality control for the CRC cohort host RNA-seq data, and summarize sample 
collection and data processing and acquisition for other datasets.

CRC samples and data. We used 88 pairs of gut microbiome and host gene 
expression samples from 44 patients, with primary tumour and normal tissue 
samples taken from each individual. The individuals in this cohort included 23 
females and 21 males, with an average age of 65 years (median: 67, range: 17–91). 
Patient samples were characterized and described by Burns et al.3. Briefly, these 
de-identified samples were obtained from the University of Minnesota Biological 
Materials Procurement Network (Bionet). Tissue pairs were resected concurrently, 
rinsed with sterile water, flash frozen in liquid nitrogen and characterized by 
staff pathologists. Detailed cohort characteristics for this dataset are included in 
Supplementary Table 1.

Host RNA-seq sequencing, alignment and quality control. Total RNA was extracted 
using a previously established protocol3,105. Approximately 100 mg of flash-frozen 
tissue per sample were lysed by placing the tissue in 1 ml of Qiazol lysis reagent 
(Qiagen) and sonicating in a 65 °C water bath for 1–2 h. Nucleic acids were purified 
from the lysates using the Qiagen AllPrep DNA/RNA mini kit (Qiagen), quantified 
using a Nanodrop 2000 spectrophotometer (Thermo Fisher) and submitted 
for RNA sequencing to the University of Minnesota Genomics Center. Total 
eukaryotic RNA isolates were quantified using a fluorimetric RiboGreen assay, and 
once the samples passed the initial QC step (≥1 μg and RNA integrity number ≥ 8), 
they were converted to Illumina sequencing libraries using Illumina’s TruSeq 
stranded total RNA library prep (for details, see www.illumina.com). Truseq 
libraries were hybridized to a paired-end flow cell and individual fragments were 
clonally amplified by bridge amplification on the Illumina cBot. Once clustering 
was complete, the flow cell was loaded onto the HiSeq 2500 and sequenced using 
Illumina’s SBS chemistry. Base call (.bcl) files for each cycle of sequencing were 
generated by Illumina Real Time Analysis (RTA) software. Primary analysis and 
index de-multiplexing were performed using Illumina’s bcl2fastq v2.20.0.422, 
which outputs the demultiplexed FASTQ files.

A quality check of raw sequence FASTQ files was performed using FastQC 
software (version 0.11.5)106. Quality trimming was performed to remove sequence 
adaptors and low-quality bases using Trimmomatic with 3 bp sliding window 
trimming from the 3’ end requiring minimum Q16 (phred33)107. FastQC was 
run on the resulting trimmed files to ensure good quality of sequences. The 
paired-end reads were mapped to NCBI v38 H. sapiens reference genome using 
HISAT2108, resulting in an average alignment rate of 87.11% overall for 88 samples. 
We obtained a range of read counts between 14,365,657 and 31,530,487 aligned 
reads per sample, with an average of 22,475,688.2 and 22,697,605.5 aligned reads 
per sample. SAMtools was used for sorting and indexing the aligned bam files. 
After alignment, the ‘Subread’ package (version 1.4.6) within the ‘featureCounts’ 
programme was used to generate the transcript abundance file109 (Extended Data 
Fig. 4).

16S rRNA sequencing data. The microbiome dataset used in this study was 
generated and published previously3. Briefly, total DNA was isolated from the 
flash-frozen tissue samples and their associated microbiomes by adapting an 
established nucleic acid extraction protocol105. DNA isolated from colon samples 
was quantified by quantitative PCR (qPCR), and the V5–V6 regions of the 16S 
rRNA gene were PCR amplified and sequenced using the Illumina MiSeq (v3 Kit) 
with 2 × 250 bp paired-end protocol. The forward and reverse reads were merged 
and trimmed using USEARCH v7110. The merged and filtered reads were used 
to pick operational taxonomic units (OTUs) with QIIME v.1.7.0111. We used the 
unnormalized and unfiltered OTU table in tab-delimited format, representing 
mucosal microbiome data from 44 tumour and 44 patient-matched colon tissue 
samples. We describe the steps for preprocessing microbiome data for integration 
analysis below.

IBD samples and data. We used previously generated and published host gene 
expression (RNA-seq) and mucosal gut microbiome (16S rRNA) data for the IBD 
cohort generated as part of the HMP2 project22,25. These include data from colonic 
biopsy samples collected from 78 individuals, including 56 individuals with IBD 
and 22 individuals without IBD (‘non-IBD’ in HMP2). Out of 56 IBD patients, 
34 patients had Crohn’s disease (CD) and 22 patients had ulcerative colitis (UC). 
The individuals in this cohort included 38 females and 40 males. Age at the time 
of sample collection is not reported in the metadata file available for this cohort 
(http://ibdmdb.org). The detailed protocol for sample collection and processing is 
described at http://ibdmdb.org/protocols. Briefly, biopsies were collected during 
the initial screening colonoscopy and stored in RNAlater for molecular data 
generation (host and microbial, stored at –20 °C). DNA and RNA were extracted 
from RNAlater-preserved biopsies using the AllPrep DNA/RNA universal kit from 
Qiagen. For microbiome profiling, bacterial genomic DNA was extracted from the 
total mass of the biopsied specimens using the MoBIO PowerLyzer tissue and cells 
DNA isolation kit. The 16S rDNA V4 region was PCR amplified and sequenced in 
the Illumina MiSeq platform using the 2 × 250 bp paired-end protocol. Read pairs 
were demultiplexed and merged using USEARCH v7.0.1090 and clustered into 
OTUs using the UPARSE algorithm110,112. For host gene expression data, mRNA 
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was extracted from biopsy samples, followed by RNA-seq library preparation using 
a variant of Illumina TruSeq stranded mRNA sample preparation kit. Sequencing 
was performed according to the manufacturer’s protocols using either the HiSeq 
2000 or HiSeq 2500 with 101 bp paired-end reads. Data were analysed using the 
Broad Picard Pipeline.

Detailed cohort characteristics for this dataset are included in Supplementary 
Table 1. We downloaded metadata, host RNA-seq data and microbiome data 
for these samples from http://ibdmdb.org in July 2018. We downloaded the 
unnormalized and unfiltered OTU table and host transcript read counts files in 
tab-delimited format. We describe the filtering and preprocessing steps for host 
gene expression and microbiome data below.

IBS samples and data. We used previously generated and published host gene 
expression (RNA-seq) and mucosal gut microbiome (16S rRNA) data for the 
IBS cohort8. These include data from colonic biopsy samples collected from 
42 individuals, including 29 individuals with IBS and 13 healthy individuals 
(non-IBS). The individuals in this cohort included 31 females and 11 males, 
with an average age of 38 years (median: 35, range: 20–63). These samples were 
collected at Mayo Clinic Rochester and are described in detail by Mars et al.8. 
Briefly, for the microbiome data, DNA was extracted from biopsy sections using 
the QIAGEN PowerSoil kit (QIAGEN). The V4 region of the 16S rRNA gene was 
amplified, followed by paired-end 2 × 250 bp sequencing on an Illumina MiSeq. 
Trimming of adaptors, quality control and merging of reads were performed using 
Shi7113. Amplicon sequences were aligned to the 16S rRNA genes using BURST114. 
For host gene expression data, mRNA was extracted from biopsy samples, followed 
by RNA-Seq library preparation using the Illumina TruSeq RNA Library Prep Kit 
v2. Sequencing was performed on an Illumina HiSeq 2000 with 101 bp paired-end 
reads. Gene expression counts were obtained using the MAP-RSeq v.2.0.0 that 
consists of alignment with TopHat 2.0.12 against the human hg19 genome build, 
and gene counts with the Subread package 1.4.4115–117.

Detailed cohort characteristics for this dataset are included in Supplementary 
Table 1. We obtained the unnormalized and unfiltered OTU table and host 
transcript read count files in tab-delimited format via personal communication 
with authors of the paper8. For some individuals, samples were collected at 
two timepoints. For these cases, we averaged the gene expression levels and 
microbiome abundance measurements across the two timepoints. This is 
supported by a recent study showing that ‘omics’ methods are more accurate when 
using averages over multiple sampling timepoints118. We describe the filtering and 
preprocessing steps for host gene expression and microbiome data below.

Preprocessing host gene expression data. For host gene expression data for each 
disease cohort, we used the ‘biomaRt’ R package (version 2.37.4) to only keep 
data for protein-coding genes119. We filtered out lowly expressed genes to retain 
genes that are expressed in at least half of the samples in each disease cohort. 
We performed variance stabilizing transformation using the R package ‘DESeq2’ 
(version 1.14.1) on the filtered gene expression read count data120. We filtered out 
genes with low variance, using 25% quantile of variance across samples in each 
disease cohort as cut-off. Performing these steps for RNA-seq data for each disease 
cohort separately resulted in a unique host gene expression matrix per disease for 
downstream analysis, including 12,513 genes in the CRC dataset, 11,985 genes in 
IBD dataset and 12,429 genes in IBS dataset.

Preprocessing microbiome data. We performed the following steps for 
microbiome data from each disease cohort separately. First, sequences that 
were classified as either having originated from Archaea, chloroplasts, known 
contaminants originating from laboratory reagents or kits, and soil- or 
water-associated environmental contaminants were removed from the OTU 
table as described earlier121. Next, we summarized the OTU table at the species (if 
present), genus, family, order, class and phylum taxonomic levels, and performed 
prevalence and abundance-based filtering to retain taxa found at 0.001 relative 
abundance in at least 10% of the samples.

To allow for identification of associations at any taxonomic level without 
repeating the analyses at each taxonomic rank, we combined summarized taxa 
matrices at different ranks into a combined taxa matrix. This approach could 
potentially lead to multi-counting of reads within a taxonomic group, leading 
to addition of correlated features in the taxa abundance matrix. This issue was 
mitigated by our penalization approach using lasso with stability selection (see 
Methods: ‘Lasso regression analysis’ and ‘Stability selection for the lasso model’). 
Specifically, instead of picking multiple correlated microbial taxa from a given 
taxonomic clade, this approach only selects the microbial taxon out of a group 
of correlated taxa for which the abundance is most robustly associated with the 
expression of a host gene28,122. This approach allowed us to identify signals found at 
any taxonomic level and avoid missing potentially relevant associations by limiting 
the analysis to a single taxonomic level. At the same time, given the large number 
of features in high-dimensional datasets such as gene expression and microbiome 
data, our approach circumvents the computationally intensive analysis that would 
be required if each taxonomic level was analysed separately.

To account for compositionality effects in microbiome datasets, we tested 
two different approaches for performing centered log ratio (CLR) transformation 

on our taxonomic data for each disease: (1) we concatenated the summarized 
taxa matrices (count data) into a combined taxa matrix, and then applied CLR 
transform on the combined matrix, (2) we CLR-transformed each taxon rank, and 
then concatenated them into a combined matrix. We verified whether these two 
transformation approaches were correlated with each other. To do so, we compared 
the taxa abundance profiles resulting from the two transformation approaches, 
and found that the two profiles are significantly correlated (P value < 0.05), with 
an average Pearson’s correlation of 0.92 and an average Spearman correlation of 
0.87 across samples in a dataset (see Extended Data Fig. 5 for example correlations 
between the taxa profiles resulting from the two transformations on a few 
randomly selected samples from the CRC microbiome dataset). This concordance 
between the taxa profiles resulting from the two transformation approaches 
implies that the transformation approach is unlikely to impact downstream 
results. The first approach generated a taxa profile that is compositionally coherent 
and has a uniform transformation across taxa in a dataset, whereas the second 
approach resulted in a taxa profile with multimodal distribution (corresponding to 
composition at each taxonomic rank) that might bias the variable selection by lasso 
approach. Hence, we adopted the first approach for transforming our taxonomic 
data.

As a result, we obtained a taxonomic abundance matrix for each disease cohort, 
which included 235 taxa in the CRC dataset, 121 taxa in the IBD dataset and 238 
taxa in the IBS dataset. We observed that the number of unique taxonomic groups 
found in the IBD dataset was 40% of those found in the CRC and IBS datasets, 
thus implying that the IBD dataset has lower bacterial diversity than the other two 
disease datasets. This observation is consistent with previous studies that have 
shown reduced bacterial diversity in gut mucosal microbiome in patients with IBD 
compared with individuals without this disease123–125, including the HMP2 study 
that generated and described the IBD dataset used in our study22,25. In addition, 
previous studies that generated and characterized the CRC and IBS datasets used in 
our work have reported increased microbial diversity in these conditions3,8.

Integrating host gene expression and gut microbiome data across diseases. Our 
study includes three different disease cohorts with disparate protocols for sample 
collection, handling, preparation and sequencing. Previous studies have shown 
that differences in data generation protocols, including sample collection, storage, 
DNA/mRNA extraction, PCR amplification and sequencing can lead to potential 
batch effects regardless of the data processing pipeline used126–128. Studies have 
shown that even when using the same data curation pipeline, biases in the data 
generation pipeline and batch effects still influence the assignment of taxonomic 
composition and gene expression profiles127,129. Statistical approaches to correct for 
batch effects have been proposed for gene expression and microbiome datasets; 
however, most of these approaches are relevant to testing differences between cases 
and controls, and do not apply to integrative analyses126,128.

Previous studies have also shown that different clustering approaches, such as 
operational taxonomic units (OTUs), zero-radius OTUs (zOTU) and amplicon 
sequence variants (ASVs), and specific pipeline settings may not have major 
influence on taxonomic classification compared with experimental factors such 
as choice of sequencing primer130. To check this in our dataset, we re-analysed a 
few samples from some of our disease dataset using the DADA2 pipeline131, which 
uses ASV clustering, and compared results to the OTU clustering that we applied 
to process the data used in our study. We found that the estimated taxa profiles are 
correlated between the two approaches at different taxonomic levels. For example, 
in a few CRC samples, we found that taxa profiles obtained using OTU clustering 
and ASV clustering are significantly correlated at different taxonomic levels, 
including at the phylum (Spearman rho = 0.89, P value = 0.0068), class (Spearman 
rho = 0.68, P value = 0.029) and genus (Spearman rho = 0.6, P value = 0.088) 
levels. Despite these fairly correlated taxonomic profiles, it is hard to assess the 
overall bias due to differences in data processing on the downstream analyses. 
Additionally, it is difficult to disentangle and compare the bias due to differences 
in data processing pipelines with those due to differences in experimental factors, 
as the latter cannot be quantified in our study. These combined differences 
could potentially influence the assignment of taxonomic composition and gene 
expression profiles across disease cohorts, which may in turn impact downstream 
integration analyses. While it is difficult to fully eliminate these biases, we tried to 
minimize the overall batch effect across disease cohorts in our study by adopting 
a meta-analysis approach, where we performed our integration analysis and 
compared disease to control samples within each cohort separately, and combined 
the results across cohorts at the last analysis step. While meta-analysis approaches 
have disadvantages, such as reduced statistical power, they have been extensively 
used to minimize batch effects when integrating genomic data from multiple 
studies128, and have recently proven useful in microbiome studies132,133.

Another potential issue is the difference in sample size across disease cohorts 
and between the case and control groups within each cohort. These sample size 
differences can result in differences in statistical power when applying sparse 
CCA and lasso regression. This can impact the number of host gene–microbe 
associations and pathways identified in each disease cohort, and the number of 
overlapping associations and pathways identified across cohorts. We attempted 
to minimize this effect by applying a differential enrichment analysis that is more 
robust to different levels of statistical power due to sample size. Additionally, our 
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analysis focused only on the taxonomic composition of the microbiome, hence we 
could not characterize associations involving microbial genes and pathways. We 
note that it might be challenging to generalize some of the results found here, as 
microbiome profiles may vary across individuals and diseases. Hence, investigating 
the functional repertoire of microbial changes and its association with host 
genomic data would be a promising future direction.

Procrustes analysis and Mantel test. To assess overall correspondence between 
host gene regulation and gut microbiome composition in CRC, IBD and IBS, we 
performed Procrustes analysis in R using the ‘vegan’ package (version 2.4-5)134. 
For each disease cohort, we used Aitchison’s distance on host gene expression 
data and Bray-Curtis distance on gut microbiome data as input to the Procrustes 
analysis135. The significance of rotation agreement was obtained using the 
‘protest()’ function with 9,999 permutations. We also applied a Mantel test to 
verify overall correlation between dissimilarity matrices of host gene expression 
(Aitchison’s distance) and gut microbiome abundance (Bray-Curtis distance) in 
each disease cohort using the vegan package (version 2.4-5) in R. We also used 
the Mantel test to verify the overall correspondence between paired data for 
each disease cohort, and found a similar pattern of significance of agreement as 
Procrustes analysis for CRC (P value = 0.0026), IBD (P value = 0.2597) and IBS  
(P value = 0.9525). Significance was tested using 9,999 permutations.

Overview of integration framework. We developed a machine learning 
framework for integrating multi-omic high-dimensional datasets, such as host  
gene expression and gut microbiome abundance. Our integration approach has  
two parts: (1) sparse CCA26,27 for identifying groups of host genes that associate 
with groups of gut microbial taxa to characterize pathway-level associations and  
(2) lasso penalized regression28 for identifying specific associations between 
individual host genes and gut microbial taxa (Fig. 1a and Extended Data Fig. 1). 
We describe both methods in detail below. We applied our integration analysis to 
paired host gene expression data and gut microbiome data for each disease cohort 
separately to avoid any potential batch effects. For each disease cohort dataset, we 
conducted the integration analysis separately for the patient data (that is, CRC, 
IBD and IBS) and corresponding control data (non-CRC, non-IBD and non-IBS, 
respectively), and considered only associations that were found in patients but not 
in controls. We standardized and normalized the data in all host gene expression 
and microbiome datasets before the application of statistical methods to satisfy the 
distribution requirements of the statistical models.

Sparse CCA. We used sparse CCA to identify group-level correlations between 
paired host gene expression and gut microbiome data in each disease cohort. CCA 
identifies linear projection of two sets of observations into shared latent space that 
maximizes correlation between the two datasets136. Sparse CCA is adapted from 
CCA for high-dimensional settings to incorporate feature selection by utilizing L1 
or lasso penalty in CCA26. The objective function of sparse CCA can be expressed 
as follows:

maximizeu,vuTXTYv subject to uTXTXu ≤ 1, vTYTYv ≤ 1, ||u||1 ≤ λ1, ||v||1 ≤ λ2

where, X and Y denote two data matrices with the same number of samples but 
different number of features (representing gut microbiome taxonomic composition 
data and host gene expression data, respectively); u and v are canonical loading 
vectors of X and Y, respectively; λ1 and λ2 control lasso penalties of u and v, 
respectively; Τ denotes the transpose of a matrix.

For each disease cohort, we separately applied sparse CCA using the R (version 
3.3.3) package ‘PMA’ (version 1.1), with gut microbiome taxonomic composition 
and host gene expression as two sets of variables to be correlated137. Below, we 
describe details on hyperparameter tuning, fitting sparse CCA models, enrichment 
analysis and visualization of sparse CCA output.

Hyperparameter tuning and fitting for sparse CCA model. We performed 
hyperparameter tuning to identify the sparsity penalty parameters for 
gut microbiome abundance (λ1) and host gene expression (λ2) data. Since 
the permutation search provided in the PMA package only performs a 
one-dimensional search in the tuning parameter space, we implemented a 
grid-search approach using leave-one-out cross-validation in R (version 3.3.3) 
for hyperparameter tuning. We selected penalty parameters that had the highest 
correlation under cross-validation. Using this approach, we identified λ1 as 0.15 
and λ2 as 0.2 for CRC data, λ1 as 0.177 and λ2 as 0.333 for IBD data, and λ1 as 0.4 
and λ2 as 0.1 for IBS data.

After identifying sparsity parameters, we fit the sparse CCA model to obtain 
subsets of correlated host genes and gut microbes, known as components. Each 
sparse CCA component includes non-zero weights (or canonical loadings) on gut 
microbes, and non-zero weights on a subset of host genes correlated with those gut 
microbes to capture joint variation in the two sets of observations. We computed 
the first 10 sparse CCA components for each disease cohort, performing a 
separate computation for case and control samples. Sparse CCA components were 
computed iteratively, informed by previously computed components, thus resulting 
in uncorrelated components138.

Significance of correlation for sparse CCA components. We computed 
the significance of each pair of canonical variables (or a component) using 
the leave-one-out cross-validation approach in R (version 3.3.3). For a given 
component, we first used the penalty parameters determined above to compute the 
sparse CCA output, with one sample held out. We then computed the scores for 
the held-out sample, that is, we computed scoreXi = Xiu−i and scoreYi = Yiv−i, 
where i is the held-out sample, Xi and Yi denote the values for the ith sample of the 
input data matrices X and Y, and u−i and v−i are the canonical loadings estimated 
from the sparse CCA computation without the ith sample. We repeated this n 
times, where n is the total number of samples in the data, to obtain the vector of 
held-out scores. To assess the true strength of association and its significance, we 
used ‘cor.test()’ on the scores computed for the held-out samples. We corrected 
the P values for multiple hypothesis testing using the Benjamini-Hochberg (FDR) 
method within each disease cohort, and determined significant components at 
FDR < 0.1. Note that here we are testing for significance at the component level, 
that is, for a group of host genes correlated with a group of gut microbes, rather 
than the significance of the individual features selected, which depends on the level 
of sparsity penalization.

Using this approach, we identified 7 significant components in CRC, with 
an average of 828 host genes and 8 gut microbes; 4 significant components in 
IBD, with an average of 2,095 host genes and 6 gut microbes; and 6 significant 
components in IBS, with an average of 577 host genes and 61 gut microbes 
(FDR < 0.1, Supplementary Tables 2–4).

Enrichment analysis for sparse CCA. To characterize host pathways enriched for 
the set of host genes associated with microbes in each component, we implemented 
an enrichment analysis in R (version 3.3.3). We implemented Fisher’s exact test to 
assess pathway enrichment, where we used the set of host genes input to the sparse 
CCA analysis as background genes, and the set of host genes in a component as 
the genes of interest. We used the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Pathway Interaction Database (PID) gene sets from the MsigDB 
canonical pathways collection139,140. To avoid pathways that are too large to provide 
any specific biological insights or too small to provide adequate statistical power, 
we excluded any pathway with either (1) fewer than 25 genes, (2) more than 300 
genes or (3) fewer than 5 genes that overlapped between the genes of interest and 
the pathway. We combined the set of enriched host pathways for all significant 
components for a given disease dataset, corrected for multiple hypothesis testing 
within each disease cohort using the Benjamini-Hochberg (FDR) approach and 
determined significant host pathways at FDR < 0.1. For a given pathway, we 
assigned the component that gave the highest significance for this pathway. This 
analysis was performed separately for case and control data for each disease. 
To identify case-specific host pathways, we used a two-part approach: (1) we 
identified pathways that were only significantly enriched in cases (FDR < 0.1) but 
not in controls and (2) we identified pathways that were significant in both the 
cases and controls at FDR < 0.1, and performed differential enrichment analysis for 
pathways in cases versus controls as described below. We retained pathways that 
were significantly enriched at FDR < 0.1 and differentially enriched in cases versus 
controls at FDR < 0.2. Finally, we combined the pathways from parts (1) and (2) to 
obtain case-specific pathways at FDR < 0.1.

Differential enrichment analysis of pathways. We performed differential 
enrichment of pathways in cases versus controls by implementing a comparative 
log odds-ratio approach in R141,142. To do so, we first computed the z-score for the 
odds ratio for the ith pathway in cases:

zi,case = log(δi)/SE(δi),

where δi is the odds-ratio for the ith pathway in cases, and SE (δi) is the standard 
error for the ith pathway in cases, which is computed using the four elements, n1 
to n4, of the 2 × 2 contingency table used in the enrichment analysis for the ith 
pathway as follows:

SE(δi) =
√

1/n1 + 1/n2 + 1/n3 + 1/n4.

Similarly, we computed zi,ctrl for the same pathway in the controls. Next, we 
computed a comparative log odds-ratio for the ith pathway overlapping between 
cases and controls as follows:

zi, case−ctrl =
log(δi,case) − log(δi,ctrl)

SE(δi,case,ctrl)
.

The greater the value of zi,case−ctrl, the greater the odds that a pathway is 
differentially enriched in case versus control than by chance. P values were inferred 
assuming normal approximations, and corrected for multiple hypothesis testing 
using the Benjamini-Hochberg (FDR) approach.

Visualizing disease-specific and shared host pathways and components from 
sparse CCA. To determine ‘shared’ host pathways (that is, host pathways for which 
gene expression correlates with gut microbes across all three disease cohorts) and 
‘disease-specific’ host pathways (that is, host pathways for which gene expression 
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correlates with gut microbes in only one of the three disease cohorts), we computed 
overlaps between significant case-specific host pathways determined above across 
the three disease cohorts. Given the overlap across the curated gene sets from 
MsigDB, we controlled for redundancy across pathways for visualization purposes. 
To do this, we identified similar pathways on the basis of their relative overlap 
in terms of the set of genes using an overlap coefficient. The overlap coefficient 
between two pathways is defined as the number of common genes between 
the pathways divided by the number of genes in the pathway with fewer genes. 
Specifically, the overlap coefficient is represented as follows:

overlap(X, Y) =
|X ∩ Y|

min (|X|, |Y|)|

For the top 15 most significant host pathways (FDR < 0.1) discovered for each 
shared and disease-specific set (Supplementary Table 18), we computed pairwise 
similarity between pathways as overlap coefficients and used a maximum allowed 
similarity score of 0.5 as a cut-off. Using the pairs of pathways that satisfied the 
cut-off, we computed the connected components to identify clusters of overlapping 
pathways. For visualization purposes, we selected a representative pathway from 
each connected component, prioritizing the pathway with the highest number of 
genes (Fig. 2a and Supplementary Table 4). We visualized host pathway enrichment 
using the R package ‘ggplot2’ (version 3.2.1).

For visualizing components corresponding to selected host pathways or 
common host genes across diseases (Fig. 2b–d), we ordered host genes and taxa 
by their absolute coefficients in the component, and selected the top 10 host genes 
and taxa for representation. If multiple taxa originating from the same lineage 
occurred in a component, we selected the one with the highest coefficient to reduce 
redundancy, thus representing the taxa with the largest contribution from a given 
lineage. The size of host genes and gut microbial taxa were scaled by the absolute 
value of their corresponding coefficients in a given component. All sparse CCA 
components were visualized using Cytoscape (version 3.5.1)143.

Lasso regression analysis. We used lasso penalized regression to identify specific 
associations between individual host genes and gut microbial taxa within each 
disease cohort28. We implemented a gene-wise model using expression for each 
host gene as response and abundances of microbiome taxa as predictors, to identify 
microbial taxa that are correlated with a host gene. An ordinary least squares 
(OLS) regression is not suitable for this task since OLS results in unstable solutions 
under high-dimensional settings or when p >> n, that is, the number of predictors 
p is much higher than the number of samples n. Additionally, we expected the 
abundance of only a few microbial taxa to correlate with the expression of each 
host gene. To address this, we used lasso regression, which is similar to multivariate 
OLS, except that it uses shrinkage or regularization to perform variable selection, 
thus picking only a few taxa that associate with a host gene’s expression.

To account for other factors that can impact host gene expression or 
microbiome composition, each model also included covariates in the predictor 
matrix (that is, microbiome abundance table) for gender (male or female), disease 
subtype for IBD (Crohn’s disease or ulcerative colitis), disease-subtype for IBS 
(constipation (IBS-C) or diarrhoea (IBS-D)).

The lasso model estimates the lasso regression coefficient β̂ by minimizing the 
following:

n
∑

i=1



yi − β0 −

p
∑

j=1
βjxij





2

+ λ
p

∑

j=1
|β| ,

where n is the number of samples, p is the number of predictors (taxa and other 
covariates), 1 ≤ i ≤ n, 1 ≤ j ≤ p, y is the response (host gene expression), x is 
the predictor (taxa abundance and other covariates) and λ is the tuning parameter, 
λ ≥ 0.

In addition to minimizing the residual sum of squares (first term in the 
equation), lasso minimizes the l1 norm of the coefficients (second term in the 
equation), which has an effect of forcing some of the coefficients to zero as the 
value of the tuning parameter λ increases. Thus, lasso performs feature or variable 
selection that leads to sparse models.

We implemented a lasso regression framework using the R (version 3.3.3) 
package glmnet (version 2.0-13), which uses cyclical coordinate descent to 
compute a regularization path144. Our framework executes a lasso regression for 
each host gene’s expression as response and abundances of microbial taxa and 
values of other covariates as predictors. We used leave-one-out cross-validation to 
estimate the tuning parameter λ, which was used to fit the final model on a given 
disease dataset.

We then performed inference for the lasso model using a regularized projection 
approach known as desparsified lasso. The desparsified lasso uses the asymptotic 
normality of a bias-corrected version of the lasso estimator to obtain 95% 
confidence intervals and P values for the coefficient of each predictor (microbe) 
associated with a given host gene145. We used the R package ‘hdi’ (version 0.1-7) 
that implements the desparsified lasso approach for estimation of confidence 
intervals and hypothesis testing in high-dimensional and sparse settings145,146. We 

then corrected for multiple hypothesis testing using the Benjamini-Hochberg 
(FDR) method.

Stability selection for the lasso model. Since the lasso model is sensitive to small 
variations of the predictor variable, we used stability selection to pick out robust 
microbes associated with a host gene122. Stability selection is a resampling-based 
method that can be combined with different variable selection procedures in 
high-dimensional settings, including lasso. Briefly, stability selection with lasso 
proceeded as follows:

Step 1. Select a random subset of the data.
Step 2. Fit the lasso model with a randomly perturbed penalty term in 

the neighbourhood of the ‘best’ penalty λ. Record the set of selected variables 
(microbes).

Step 3. Repeat steps (1) and (2) K times.
Step 4. Compute the frequency of selection fi per variable (microbe) across all 

trials.
Step 5. Select the variables (microbes) that are selected with a frequency of at 

least fthr, a pre-specified threshold value. Thus, we selected a set of stable variables 
(microbes) such that fi ≥ fthr.

The overall idea is that, if the same variables (microbes) are repeatedly selected 
when the parameters are perturbed, then they are robust variables. Stability 
selection also controls for family-wise error rate, thus controlling for false positives 
in addition to the FDR approach mentioned above122. In our analysis, we used the 
R package ‘stabs’ (version 0.6-3) to perform stability selection147. Specifically, we 
used the following parameters in the process described above: in Step 1, a random 
subset of size n/2 of data was selected, where n is total number of samples; in Step 
3, K = 100; and in Step 5, fthr = 0.6, that is, a predictor (microbe) selected in at least 
60% of the fitted models is considered stable. The choice of these parameters are in 
accordance with the proposal of stability selection by Meinshausen & Bühlmann122.

Finally, we performed an intersection between associations identified by 
stability selection here and associations identified at FDR < 0.1 by the lasso model 
described above. We filtered out any significant and stability-selected host gene–
gender and host gene–disease subtype (applicable to IBD and IBS) associations 
from the output to retain significant and stability-selected host gene–microbe 
associations at FDR < 0.1.

Parallel execution of lasso analysis on supercomputing nodes. We leveraged 
supercomputing nodes to implement a parallel processing framework to allow 
scalable computation for the high-dimensional datasets. We implemented a parallel 
framework for executing the gene-wise lasso analysis, where we parallelized 
execution of lasso models on host genes across multiple nodes and cores on a 
compute cluster from Minnesota Supercomputing Institute. Our framework 
scalably computes gene-wise models for over 12,000 host genes, where each model 
includes hundreds of microbial taxa as covariates. We used job arrays to parallelize 
our analysis on multiple nodes on the cluster. Additionally, we used the R packages 
‘doParallel’ (version 1.0.15) and ‘foreach’ (version 1.4.7) to run parallel processes on 
multiple cores of each compute node. Our parallel processing framework using 5 
compute nodes took an average of 5 h 30 min per disease cohort.

Enrichment analysis for lasso output. To characterize biological functions for 
the host genes that were found to be associated with specific gut microbes in a 
disease cohort by the lasso framework, we implemented an enrichment analysis in 
R (version 3.3.3) using Fisher’s exact test. We used the set of expressed genes input 
to the lasso analysis as the background genes, and the set of host genes associated 
with gut microbes in patient samples as genes of interest. We used the KEGG, PID 
and REACTOME gene sets from the MsigDB canonical pathways collection139,140. 
To avoid pathways that were too large to provide any specific biological insights 
or too small to provide adequate statistical power, we excluded from our analysis 
any pathways with more than 85 genes, fewer than 10 genes, or fewer than 5 genes 
that overlapped between the pathway and the genes of interest. Out of 1,881 host 
pathways, these criteria filtered out 297 pathways for being too large, 299 pathways 
for being too small and an average of 1,186 pathways for not having sufficient 
overlap with the genes of interest, resulting in an average of 99 pathways that were 
tested for enrichment in each disease cohort. We are aware that this approach may 
filter out some potential pathways of interest from our analysis. However, even if 
included, these pathways are unlikely to yield significant associations due to lack of 
statistical power. The P values obtained from Fisher’s exact test were adjusted for 
multiple testing using the Benjamini-Hochberg (FDR) approach.

Comparing case versus control associations and pathways. Using lasso 
regression and stability selection, we identified associations for cases and controls 
with non-zero lasso regression coefficients for each disease cohort. To identify 
associations that were found only in cases but not in controls within a disease 
cohort, we checked for any potential overlap between case and control associations, 
without subsetting associations using any P value or FDR cut-off. We found no 
overlapping host gene–microbe associations between cases and controls in any 
disease cohort, which could be driven by underlying biological differences between 
case and control conditions within each cohort. In addition, downsampling the 
cases to match the controls also did not yield any overlapping associations. Thus, 

NATuRE MICRoBIoLoGy | VOL 7 | JUNE 2022 | 780–795 | www.nature.com/naturemicrobiology790

http://www.nature.com/naturemicrobiology


ArticlesNature Microbiology

we conclude that the designation of host gene–microbe associations as specific to 
cases and controls is robust to the significance cut-off and sample size differences 
in our study cohort.

Another potential approach to identify case-specific associations would be 
to use an interaction term between the independent variable (that is, microbial 
taxa) and disease status in the lasso model, and determine associations that are 
significant in cases but not in controls. Incorporating such an interaction within 
the lasso framework is not straightforward, and various approaches have been 
proposed (for an overview, see Lim & Hastie148). However, these approaches do not 
explicitly allow for different sparsity structures in cases and controls (that is, where 
an effect is present for cases but not for controls, or present for controls but not for 
cases), which is crucial to our interpretation and subsequent analyses. Moreover, 
this approach is computationally challenging for our implementation for the 
following reason: for each disease cohort, we fit over 12,300 gene-wise lasso models 
on average, where each model uses the expression for a host gene as response and 
the abundance of about 200 microbial taxa on average as predictors/independent 
variables. Adding an interaction term between each predictor (that is, microbial 
taxon) and disease status will lead to doubling the number of predictors in each 
gene’s model, resulting in about 400 predictors per model, and including over 
12,300 × 200 = 2,460,000 additional terms for assessment of model fit per disease 
cohort. Hence, we did not include interaction terms in our model.

Using enrichment analysis for host genes associated with specific gut 
microbes, we identified host pathways for cases and controls in each disease 
cohort. To account for case versus control comparison at the pathway level, we 
performed the following analysis: (1) from the results of our enrichment analysis, 
we retained the set of host pathways that were tested for enrichment in both 
cases and controls within each disease cohort without using any P value or FDR 
cut-off and (2) we tested for differential enrichment of these pathways between 
case and control groups using a comparative log odds-ratio approach (described 
above). For IBD and IBS cohorts, we found no pathways enriched in both case and 
control groups in step (1) above, implying that host pathways enriched in cases 
are indeed case-specific in these cohorts. In CRC, we found two host pathways 
that were common in both cases and controls in step (1); however, they were not 
differentially enriched in cases versus controls at FDR < 0.1 (step 2), implying 
that they were not necessarily specific to cases. Hence, we filtered out these two 
pathways from consideration for case-specific pathways.

In addition to accounting for overlaps between cases and controls at the 
association level and at the pathway level, we also accounted for any overlaps 
between host genes that were associated with microbes in cases and controls. 
We only used case-specific host genes, that is, host genes that were found to be 
associated with microbes in cases but not in controls, to perform enrichment 
analysis to determine case-specific pathways in each disease cohort. Using this 
approach, we identified 18 host pathways that are unique to each disease, including 
4 CRC-specific, 9 IBD-specific and 5 IBS-specific pathways that associate with 
unique gut bacteria (FDR < 0.1, Supplementary Table 9).

To identify any loss of function in disease (that is, associations that are found 
in controls but not in cases), we performed analysis at pathway level to determine 
functional trends in control associations compared to case associations. To do so, 
we first determined any host pathways that were found enriched only in controls 
but not in cases at FDR < 0.1. In IBD and IBS, no pathways were found to be 
enriched in controls at FDR < 0.1, so we could not identify any functional trends in 
control associations for these two disease cohorts. In CRC, top 10 control-specific 
pathways at FDR < 0.1 are related to transcriptional regulation, rRNA expression, 
DNA methylation and other such general cellular function categories that did 
not provide any useful insight on loss of function in disease. Additionally, as 
mentioned above, we did not find any pathways that were differentially enriched 
in controls vs cases in any disease cohort. Hence, given that we did not find any 
specific functional trends in the control associations in CRC, IBD and IBS cohorts, 
we only focused on case-specific associations and pathways across diseases in this 
study.

Identification and visualization of taxa and genes that are shared or distinct 
across associations in diseases. To visualize association patterns for gut microbes 
and host genes that are shared between associations across diseases, we examined 
common microbes/genes between association-pairs across disease cohorts. Given 
the difference between the number of host genes and gut microbial taxa identified 
across diseases, we first determined overlaps in host genes and microbial taxa in 
input datasets and gene–taxa associations identified across disease cohorts. To do 
this, we used a two-step process:

 (1) To examine common and distinct features in input datasets, we considered 
the host genes and taxa that were used as input to the lasso integration pipe-
line, and calculated the overlap in these host genes and taxa across cohorts 
(Supplementary Tables 19 and 20). We computed the pairwise overlap as 
an overlap coefficient, which is a measure of similarity between two sets 
and is defined here as the number of common genes (or taxa) between the 
two disease datasets divided by the number of genes (or taxa) in the dataset 
with fewer genes (or taxa). Overall, we found that an average of 84% of host 
genes are commonly expressed between diseases (Supplementary Table 19), 
while the remaining 16% of host genes might be expressed in one disease 

cohort, but not in the other two. On the other hand, only about 37% of input 
gut microbial taxa overlapped between diseases (Supplementary Table 20), 
indicating that a majority of taxa were specific to each disease cohort. This is 
consistent with previous research that have shown high dissimilarity between 
disease-associated microbial communities132,149.

 (2) Next, we calculated the overlap between the set of host genes found associated 
with gut microbes only in one of the disease cohorts (that is, disease-specific 
genes in our identified associations) and the set of host genes used as input in 
the other two diseases (Supplementary Table 21). Similarly, we calculated the 
overlap between gut microbial taxa found associated with host genes only in 
one disease (that is, disease-specific taxa in our identified associations) and 
the set of taxa used as input in the other two diseases (Supplementary Table 
22). Overall, we found similar trends as described above. We found that an 
average of 80% of disease-specific host genes in the identified associations 
were also included as input in the other two diseases (Supplementary Table 
21). The remaining 20% of disease-specific host genes were probably not 
expressed in the other two conditions. On the contrary, we found that on 
average, only 12% of disease-specific taxa in the identified associations were 
included as input taxa in the other two diseases (Supplementary Table 22). 
This is in line with our observation of disease-specific trends for gut microbial 
taxa used as input to the integration pipeline, as described above.

Given these patterns, we considered all the host genes and taxa that were 
identified after preprocessing the input dataset, which allowed us to identify 
disease-specific as well as overlapping host gene/taxa between associations across 
diseases.

To visualize associations for gut microbes that are associated with host gene 
expression in multiple diseases (Fig. 4a), we identified common microbes between 
all possible overlaps between diseases (Fig. 4a, Networks 1–4), host genes that 
associate with these common microbes in each disease, and all associations 
involving these microbes and genes in each disease (FDR < 0.1). Next, we grouped 
gene–taxa associations identified per disease by shared taxa, sorted them by FDR 
value and picked the top gene–taxa association per shared taxon until we obtained 
at most 10 associations per disease (FDR < 0.1, Supplementary Table 10).

Similarly, for visualizing associations for host genes that are associated with gut 
microbes in multiple diseases (Fig. 4b), we identified shared host genes between 
all possible overlaps between diseases (Fig. 4b, Networks 1–4), and host gene–taxa 
associations per disease for these host genes shared across diseases. We sorted the 
associations by FDR-adjusted p-values, i.e. q-values (ordered first by q-value in 
CRC associations, followed by q-value in IBD associations and finally, by q-value 
in IBS associations, depending on the overlapping set under consideration). We 
picked the top 10 genes from this merged output and identified at most the top 10 
associations involving these genes in each disease for the overlapping set under 
consideration (FDR < 0.1, Supplementary Table 11). Since lasso gives biased 
estimates of the coefficients, we used Spearman correlation coefficient (rho) to 
depict strength of association for visualizing host gene–taxa associations. All the 
associations in Fig. 4 were visualized using Cytoscape v3.5.1, where shared features 
are in grey and disease-specific features are in disease-specific colours143.

Notes on our approach and comparison to previous studies. While the disease 
cohorts used in our study have been previously published3,8,25,28, to the best of 
our knowledge, our study appears to be the first to perform a comprehensive 
characterization of host gene–microbiome crosstalk within and across these 
disease cohorts. In the previous study that described the CRC cohort, Burns 
et al.3 characterized the tumour-associated microbiome, and how it varies in 
composition compared to the microbiome of adjacent matched normal colon 
tissue. For example, they reported loss in abundance of multiple taxa within the 
order Bacteroidales in tumour-associated microbiota compared with normal 
samples. Here we found that Bacteroidales is associated with host genes CCR2 
and FPR1, which are part of the tumour-associated IL-10 signalling pathway. The 
previous study that described the IBD cohort compared IBD versus non-IBD 
samples, and found differences in transcriptional activity and abundance among 
taxa belonging to class Clostridia, and dysregulation of immune-related host 
pathways in disease state25,28. Our integrative analysis for the same cohort revealed 
associations between immunoinflammatory pathways and members within class 
Clostridia, including Peptostreptococcaceae and Clostridium sensu stricto 1. In the 
original study describing the IBS cohort, Mars et al.8 found overrepresentation of 
Streptococcus species in patients with IBS compared with healthy individuals, and 
identified associations between faecal microbes, such as Peptostreptococcaceae, 
with host genes implicated in peptidoglycan binding. Our analyses revealed several 
important associations between closely interacting tissue-adherent microbiome 
and host genes and pathways in IBS, including associations between Streptococcus 
and host genes that modulate macrophage inflammatory response, and between 
Peptostreptococcaceae and host pathways that regulate intestinal homoeostasis and 
inflammation.

An important contribution of our work is a machine learning-based integrative 
framework for characterization of host gene–microbe associations across human 
diseases. Although few recent studies have investigated associations between host 
transcriptome and gut microbiome in human gut disorders, our analysis uses 
a unique analytical technique that has several advantages21–24. First, as opposed 
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to analyses that rely on calculating pairwise correlations between features (for 
example, Dayama et al.24), our approach does not require restricting the data to 
a predetermined subset of taxa or genes of interest. In addition, compared to 
Procrustes analysis, which is commonly used for finding overall correspondence 
between paired datasets, our approach does not only detect overall association, but 
can also find specific associations between gut microbial taxa and host genes (using 
lasso) and pathways (using sparse CCA), shedding light on potential biological 
mechanisms of association. Furthermore, our approach can be applied to other 
types of multi-omic dataset, including microbial metabolomic and metagenomic 
data8. Lastly, our analysis incorporates data from several diseases, identifying 
commonalities across conditions as well as disease-specific patterns.

Our study uncovered key insights at the systems level; for example, we 
found that gut microbes that have been associated with all three diseases, such 
as Streptococcus, associate with different host genes in each disease, suggesting 
that the same microbial taxon can contribute to different health outcomes by 
potentially regulating the expression of different host genes in the colon. We 
also identified numerous specific hypotheses in the form of disease-specific 
associations; for example, we found that: Bacteroidales is associated with host 
genes CCR2 and FPR1 in the IL-10 signalling host pathway in colorectal cancer; 
Peptostreptococcaceae is associated with MAPK3 and VIPR1 that are part of 
G protein-coupled receptors pathways in inflammatory bowel disease; and 
Bacteroides massiliensis is associated with the host gene PLA2G4A, a member of the 
prostaglandin biosynthesis pathway, in irritable bowel syndrome.

Ethics statement. For the colorectal cancer cohort, all research conformed to 
the Helsinki Declaration and was approved by the University of Minnesota 
Institutional Review Board, protocol 1310E44403. For the inflammatory bowel 
disease and irritable bowel syndrome cohorts, ethical approval is described in their 
respective publications8,22,25.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw data for host RNA-seq for the CRC cohort are available on the NCBI 
Sequence Read Archive (SRA) under BioProject ID PRJNA816986. Raw data for 
previously published 16S rRNA sequencing for the CRC cohort can be accessed at 
PRJNA2843553. Raw data for previously published 16S rRNA sequencing and host 
RNA-seq for the IBD cohort can be accessed at PRJNA398089 and GSE111889, 
respectively22,25. Raw data for 16S rRNA sequencing and host RNA-seq for the IBS 
cohort can be accessed at PRJEB37924 and GSE146853, respectively8. Processed 
data tables for host transcriptomics and microbiome data for each disease cohort 
have been included as supplementary tables (Supplementary Tables 12–17).

Code availability
Code used for integration analyses performed in the paper is available at https://
github.com/blekhmanlab/host_gene_microbiome_interactions. We have also 
included a tutorial for our integration pipeline at https://github.com/blekhmanlab/
host_gene_microbiome_interactions/tree/main/Tutorial.
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Extended Data Fig. 1 | overview of host gene-microbiome integration pipeline. Steps for integrating gut microbiome abundance and host gene expression 
data using sparse CCA and lasso approaches.
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Extended Data Fig. 2 | Examples of specific associations between gut microbial taxa and host genes in colorectal cancer (CRC), Inflammatory Bowel 
Disease (IBD), and Irritable Bowel Syndrome (IBS). The top row shows specific associations for CRC (n = 44), the middle row shows the specific 
associations for IBD (n = 56), and the bottom row shows specific associations for IBS (n = 29). The x-axis represents normalized abundance of microbial 
taxa, and the y-axis represents normalized expression of the host gene. The black line represents the line of best fit using a linear model and the grey 
shaded area represents 95% confidence interval. Desparsified lasso was used to obtain 95% confidence intervals (CI) and p-values (pval) for the 
association. P-values were adjusted for multiple comparisons using Benjamini-Hochberg (FDR) method (padj). CRC: colorectal cancer, UC: Ulcerative 
colitis, CD: Crohn’s Diseases, IBS-C: Irritable bowel syndrome - constipation, IBS-D: Irritable bowel syndrome - diarrhoea.
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Extended Data Fig. 3 | A common host gene-microbe association between colorectal cancer (CRC) and Inflammatory Bowel Disease (IBD). The 
association for CRC (n = 44) is shown on the left, and for IBD (n = 56) is shown on the right. The black line represents the line of best fit using a linear 
model and the grey shaded area represents 95% confidence interval. Desparsified lasso was used to obtain 95% confidence intervals (CI) and p-values 
(pval) for the association. P-values were adjusted for multiple comparisons using Benjamini-Hochberg (FDR) method (padj). CRC: colorectal cancer, UC: 
Ulcerative colitis, CD: Crohn’s Diseases.
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Extended Data Fig. 4 | Quality control and transcript quantification of host RNA-seq data for colorectal cancer samples. A. Average phred score for 
forward (R1) and reverse (R2) reads output by FastQC. B. Distribution of host gene expression (log10(expression) value) for each sample quantified by 
Subread package.
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Extended Data Fig. 5 | Scatterplots showing correlation between taxa profiles generated from two transformation approaches across three random 
samples from colorectal cancer cohort. The x-axis shows taxa profile resulting from one approach, where we summarize taxa ranks, combine summarized 
rank matrices, and CLR transform the combined matrix (CLR_taxa_combined), and the y-axis represents taxa profiles resulting from the second approach, 
where we summarize taxa ranks, CLR transform each taxa rank, and combine the CLR-transformed taxa ranks (CLR_taxa_ranks). The black line represents 
the line of best fit using a linear model. Spearman’s rho and associated two-tailed p-values are shown.

NATuRE MICRoBIoLoGy | www.nature.com/naturemicrobiology

http://www.nature.com/naturemicrobiology







	Identification of shared and disease-specific host gene–microbiome associations across human diseases using multi-omic inte ...
	Results
	Integrating host gene expression and gut microbiome abundance. 
	Shared host pathways are associated with disease-specific gut microbes. 
	Gut microbes are associated with individual host genes and pathways. 
	Disease-specific gut microbe–host gene crosstalk. 

	Discussion
	Methods
	Overall study design, samples and data
	CRC samples and data
	Host RNA-seq sequencing, alignment and quality control
	16S rRNA sequencing data

	IBD samples and data
	IBS samples and data
	Preprocessing host gene expression data
	Preprocessing microbiome data
	Integrating host gene expression and gut microbiome data across diseases
	Procrustes analysis and Mantel test
	Overview of integration framework
	Sparse CCA
	Hyperparameter tuning and fitting for sparse CCA model
	Significance of correlation for sparse CCA components
	Enrichment analysis for sparse CCA
	Differential enrichment analysis of pathways
	Visualizing disease-specific and shared host pathways and components from sparse CCA
	Lasso regression analysis
	Stability selection for the lasso model
	Parallel execution of lasso analysis on supercomputing nodes
	Enrichment analysis for lasso output
	Comparing case versus control associations and pathways
	Identification and visualization of taxa and genes that are shared or distinct across associations in diseases
	Notes on our approach and comparison to previous studies
	Ethics statement
	Reporting Summary

	Acknowledgements
	Fig. 1 Integrating host gene expression and gut microbiome abundance in CRC, IBD and IBS.
	Fig. 2 Shared immunoregulatory and metabolic host pathways associate with disease-specific gut microbes across human diseases.
	Fig. 3 Specific gut microbes are associated with individual host genes and pathways in each disease.
	Fig. 4 Disease-specific gut microbe–host gene crosstalk.
	Extended Data Fig. 1 Overview of host gene-microbiome integration pipeline.
	Extended Data Fig. 2 Examples of specific associations between gut microbial taxa and host genes in colorectal cancer (CRC), Inflammatory Bowel Disease (IBD), and Irritable Bowel Syndrome (IBS).
	Extended Data Fig. 3 A common host gene-microbe association between colorectal cancer (CRC) and Inflammatory Bowel Disease (IBD).
	Extended Data Fig. 4 Quality control and transcript quantification of host RNA-seq data for colorectal cancer samples.
	Extended Data Fig. 5 Scatterplots showing correlation between taxa profiles generated from two transformation approaches across three random samples from colorectal cancer cohort.




